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ON-BOARD CALCULATIONS OF A TWO-IMPULSE ABORT
TO A PRESELECTED LANDING SITE

By Robert B. Merrick
Ames Research Center

SUMMARY

A two impulse maneuver allows great flexibility in the choice of a land-
ing site. This paper assumes that a nominal two impulse abort trajectory has
been selected before flight but that the velocity required to attain that
abort trajectory from off nominal conditions will be computed manually on
board the spacecraft. The method presented here accomplishes the entire
plane change with the first impulse and restricts the application of this
impulse to certain preselected ranges. The basic theory is valid for any
transfer, in either planocentric or heliocentric space, between two positions
whose inertial coordinates are known at prescribed times. Consequently, the
theory would allow the method to be used for computing aborts from inbound
trajectories, but reasonable fuel limitations restrict its primary
applicability to outbound trajectories.

The computational procedure developed obtains three orthogonal compo-
nents, in inertial axes, of the velocity to be gained for the first impulsive
rocket firing and obtains the magnitude of second impulse. It is shown that
the method is feasible for manual calculations, using four figure accuracy,
with a family of graphs to match the time constraint.

This computational procedure can serve as a backup scheme for navigation
in interplanetary space. Midcourse corrections can be calculated by this
method.

INTRODUCTION

It is necessary that the crew of a spacecraft have a completely self-
contained capability to accomplish an abort. There are at least two reasons
for this requirement. The first is that communication difficulties of sev-
eral hours duration may occur, consequently, the astronauts cannot rely on
ground facilities to quickly process the current data and make a timely
decision for them. The second reason is the possibility of error in either
the ground computation or in the communication of the data to the spacecraft.
The astronauts must be able to independently process the current data on
board accurately enough to detect gross errors in the instructions received
from the ground.

Most studies of the guidance problem of midcourse aborts have considered
only one rocket firing and have been restricted to return trajectories which



nominally lie within the plane of the initial trajectory. These two restric-
tions were adopted because they are approximately correct for the time criti-
cal abort, that is, a minimum time return without concern for a landing site,
and because these restrictions simplify the analysis. In some abort situa-
tions, the selection of a landing site may be more important than the return
flight time. Consequently, two-impulse returns and out-of-plane returns
should be considered (ref. 1).

If a one-impulse abort maneuver is planned, there is a high probability
that a substantial (greater than 10 m/sec) second velocity increment will be
required to correct the aiming errors of the first velocity increment
(ref. 2). Necessarily then the two-impulse capability will be present in the
actual hardware. Since a second maneuver will generally be required, it is
of interest to consider how a more complete utilization of this maneuver can
increase landing site availability.

The relative flexibility of single-impulse and two-impulse aborts may be
compared by examining a typical example. Suppose a vehicle whose entry range
(from an altitude of 400,000 ft to touchdown) is 2000 nautical miles (3704 km)
must abort at a distance of 150,000 km from the earth. Suppose also, that
heating considerations limit the reentry speed such that the eccentricity of
the entry trajectory must be less than unity. In addition the vehicle must
meet entry corridor constraints (vacuum perigee = 6430 km). Under these con-
ditions the single-impulse maneuver has a range of achievable incremental
true anomaly between the abort point and the landing site of 175° to 225°.
Under these same conditions, with two impulses, there are no theoretical
bounds. Reasonable fuel limitations, however, would constrain the upper limit
to about 275° and allow some improvement in the lower limit. Even with these
restrictions the two-impulse maneuver has at least a 100 percent improvement
in earth surface availability.

The substantial additional flexibility in landing site selection obtained
by planning on appreciable fuel for the second rocket firing could lead to a
major reduction in ground standby forces in the next decade. As space travel
becomes more reliable, it is probable that ground standby forces will not be
used at all and flexibility in abort landing site selection will be increas-
ingly desirable.

The objective of this study then is to develop a method whereby astro-
nauts can have an increased on-board flexibility in returning to a favorable
landing site during an abort maneuver. The method must be sufficiently
straightforward that the on-board computation can be accomplished in reason-
able time without using a complex computer. This specification requires that
every effort be made to simplify the description of the mechanics involved.

The extra computational complications of the two-impulse maneuver should
be handled without burdening the on-board computer. Consequently, a procedure
has been developed which primarily uses manual computations and a graph of
certain elliptical orbit characteristics to determine three orthogonal compo-
nents of the velocity increment for the first firing and the magnitude of
the second velocity increment.
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Because of the propagation of the errors of the first firing, the compo-
nents of the velocity to be gained at the second firing must be determined
near the time of the second firing. Since the method presented in this report
makes the plane change at the first firing, this determination can be done by
any simple system (such as those described in refs. 3 and 4) whose only object
is to insure a safe return. Such a simple system will permit safe entry with
only minor maneuvering required to attain the landing site safely. If avail-
able, the normal on-board navigation system or ground tracking could also be
used to determine the second maneuver.

:

NOTATION
a semimajor axis
ANG angle from the abort position vector downrange to the landing position
vector, deg
AOP angle between initial and final orbital plane, deg
e eccentricity of conic trajectory
h angular momentum, km?/sec
E eccentric anomaly, rad
R magnitude of the position vector from the center of the earth to the
spacecraft, km
R position vector, km
T time, sec
v velocity magnitude, km/sec
v velocity vector, km/sec
U unit vector
) true anomaly, rad
u gravitational parameter of the earth (3.98603x10° km3/sec?)
AV incremental velocity magnitude, km/sec
Subscripts
A incremental change of a variable on the transfer trajectory
B incremental change of a variable on the approach trajectory



C incremental change of a variable between perigee and landing

D downrange component, perpendicular to the radial component
L landing site

P perigee

R radial component

T total

0 conditions just before the first velocity impulse
req conditions just after the first velocity impulse

B conditions just before the second velocity impulse
F conditions just after the second velocity impulse
1 first velocity impulse

2 second velocity impulse

GENERAL CONSIDERATIONS

After a decision to abort has been made, the astronauts must select a
landing site and a satisfactory abort trajectory which reaches the site at the
desired time. However, the selection of an abort trajectory is affected by
many factors, including the following:

1. The present range from earth.

2. The time of landing, which must be known in order to compute the
two velocity increments.

3. The time at the first rocket firing.
4. The lighting conditions at landing.
5. The total fuel consumed in the rocket firings.

6. The distribution of fuel usage between the first and second rocket
firings.

7. The degree of preference for one landing site over another.

8. The perigee altitude of the transfer trajectory.

9. The radiation received during the return.
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It is evident that the choice of an abort trajectory is affected by many
interacting considerations and this decision is then too complex for on-board
processing. Consequently, the landing site and its associated abort trajec-
tory must be selected before flight on the basis of a nominal outbound tra-
jectory. Therefore, an extensive preflight analysis will be required.

In the preflight analysis, several points, spaced a few hours apart on
the nominal outbound trajectory, are selected and the abort problem is care-
fully examined for each point. In the preflight study many return trajec-
tories are considered and a ''best' abort trajectory from each selected point
on the outbound reference trajectory is determined. It should be emphasized
that this procedure does not preclude a single-impulse return. If at a
particular point the various conditions occur which theoretically permit a
single-impulse return to the desired landing site, this trajectory will be
used if it is best.

This simplifying concept of aborting from preselected way stations has
been used previously by Kelley (ref. 5) and by Callas (ref. 6) to reduce the
complexity of the decisions needed in an emergency. However, in this report
a way station is defined as a preselected range on the actual outbound tra-
jectory rather than as a particular point on a nominal trajectory.

SIMPLIFYING ASSUMPTIONS

Physical Simplifications
1. Rocket thrust is considered to be an impulse.

Predicting the motion of a space vehicle is very difficult because it is
influenced by an asymmetrical earth, the moon, and the sun which are in
specific positions at specific times. This task must be eased substantially
to enable the astronaut to accomplish it on board. 1In order to minimize the
required computations it will be necessary to use impulsive rocket firings
and two-body trajectories. The rocket firings can be assumed to be impulsive
because they will occur over very short periods compared to the period of the
orbit.

2. The significant gravitational force is from the earth and the gravi-
tational forces of the sun and moon may be neglected.

Of all trajectories leaving the earth, the circumlunar trajectories are,
naturally, the most influenced by the third body, so it is sufficient to
examine them. For a typical circumlunar trajectory, it is known (ref. 2) that
two-body dynamics is not enough to insure a safe entry with a single-impulse
return. However, if the two-body correction is made, the errors introduced
by the inaccurate guidance can be corrected, at a range of 20,000 km from the
earth, with a penalty of less than 100 m/sec. This is true under the reason-
able restrictions of an abort range less than 200,000 km and a first velocity
increment greater than 1 km/sec. Since the Apollo space vehicle will have an



abort capability of more than 3 km/sec (ref. 7), 100 m/sec is not worrisome
from a fuel standpoint. Other interplanetary vehicles may not have as large
an abort capability but they presumably will not have a trajectory as much
affected by the moon. Thus the use of two-body trajectories is satisfactory

in either case.

3. The earth is considered to be spherical and homogeneous.

The effects of the oblateness of the earth and its uneven composition are
very small if the abort range is greater than 2 earth radii, and these effects
are always of less significance than the effects produced by the aiming errors
associated with the application of the first velocity increment.

Operational Simplifications

A landing site and the time to land are selected before flight for each
way station on the nominal outbound trajectory. In order to determine the
required abort maneuver the astronaut must know the estimated position, veloc-
ity, and time at the way station. Only a minimal burden is imposed on the
normal navigation system if the estimated R, V, T of the next one or two
way stations is made routinely available to the crew since the aborts will
be made at way stations known in advance and since the on-board computer in
its routine navigation function is capable of predicting the seven-dimensional
state vector R, V, T. The routine possession of this information simplifies

decision making when an emergency develops.

There are two velocity corrections to be determined but the second cor-
rection is used not only for a nominal maneuver but also to correct the
errors that build up as a consequence of various earlier errors, including
the imperfect achievement of the first rocket firing. Therefore, while the
first on-board calculation must produce the three orthogonal components of
the velocity to be added in the first velocity increment, it need only deter-
mine the magnitude of the second velocity increment. This magnitude is needed
so that the total fuel consumption will be known to be within available
limits. This report is only concerned with developing the data necessary
before the astronaut makes the first correction; therefore, the components of
the second velocity correction will not be calculated.

An abort will normally be accomplished with the first impulse applied
from a few minutes to an hour after the decision to abort is made and the
second impulse applied sufficiently near the earth to assure safe entry. The
plane change maneuver can be accomplished with the first rocket firing alone,
or the second alone, or partially with each firing. Consider the velocity
increment penalty caused by a plane change where Vpg, the velocity downrange
and perpendicular to the radius vector at the time the plane change is ini-
tiated, does not change in magnitude. This situation is illustrated in
sketch (a) and it is evident that the velocity increment penalty caused by the
plane change is 2Vpg{sin(AOP/2)]. When the magnitude of the downrange veloc-
ity does change, the penalty caused by the plane change may be equal to or
less than this.
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VDo in the oniginal
trojectory plane

Vpo in the new trajectory plcne/

Sketch (a)

Just before the second impulse
is applied near the earth, Vp will
ordinarily be substantially greater
than the Vp just before the first
impulse since in free fall Vp
increases monotonically as range
decreases. Since the velocity incre-
ment penalty is proportional to Vp,
it is generally more efficient to
accomplish the total plane change
with the first rocket firing. This

will be the technique used here. This technique, making the total plane
change with the first impulse, has the advantage of being simplest

analytically also.

~
- \ /range Ro

Transfer /

|rojec10ry\/

/ Outbound
Second velocity " trajectory

impulise at /

range R¢ \//
Re
/

Approach_______
trajectory ‘ e

N2

9(:/ \Lcndmg

trajectory

Figure 1.- Geometry for a typical abort.
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The astronauts will have avail-
able on board a data table of perti-
nent information about a desirable
approach trajectory. A typical abort
trajectory as shown in figure 1, may
be divided into three parts: the
transfer trajectory from the first
velocity impulse to the second, the
approach trajectory from the second
velocity impulse to vacuum perigee,
and the landing trajectory from
perigee to landing. The plane of
these trajectories is defined by the
locations of the landing site at the
time of landing and the abort point.
This latter location is obtained
from the on-board computer, as men-
tioned earlier, but the location and
time of landing, Xy, Y, Zp, TL,
should be known beforehand.

Consider now the approach por-
tion of the abort trajectory and a

fictitious vehicle moving in the proper plane on an approach trajectory which

will land at the desired time and place.

The basic problem considered here

is to rendezvous with this fictitious vehicle; having done this a successful
landing will follow. Pertinent characteristics of the approach trajectory of

this vehicle are:

a. The rendezvous radius and time, Rp and TFf.

b. The velocity components of the fictitious vehicle at that radius, Vgg

and Vpr.

¢. The perigee of the approach trajectory, Rp.

d. The central angles involved, 6 and 6.



This information about the nominal abort trajectory, that is, the landing
site and the characteristics of the approach trajectory, will be used by the i
astronaut in computing the first velocity correction. This information can be )
tabulated separately for each way station, Rp. Each table will then contain

RO, Xj,s YL’ ZL’ TL’ Rg., TF’ VRF, VDF, Rp, 6p, and 8c-
MATHEMATICS

It now remains to determine what equations are necessary and to write .
them in that form which is easiest to solve. The conic trajectory simplifi-
cations and the plane change simplifications allow a complete description of
the transfer trajectory (fig. 1); no description is needed for the approach ‘
and landing trajectories since their general characteristics are known. The
following five equations describe everything about the transfer trajectory
except the time required to traverse it. The time increment equation, for
elliptic orbits, will be discussed later.

(1 - cos 6,) h
VRreq = — - - <§9 - cos 6A> (1)
h sin 6, Ry sin 6y F
h =RV
0 'Dpeg (2)
V: U + Un = V
RrequR vDreqUD VTreq (3)
u(l - cos GA)
—(VRF - AVRQ) = - - h <l - gq cos 9A> (4)
h sin 6, Rp sin 8p F
where
Ver ~ “Vr2 = VRp |
h = RF(VDF - AVDE) = RFVDB (5) :

Equations (1) and (4) are obtained by forming the vector product of equa-
tion (12) of reference 8 with the unit vector in the appropriate radial [
direction. Equations (2) and (5) are statements concerning the constant i

!
|
|

angular momentum of the transfer trajectory.

These equations are quite simple and some of the terms in equation (1)
are used again in equation (4). The four velocities to be determined VRreq’

AvDreq’ AVRp, AVpy are expressed in equations (1), (2), (4), and (5) in terms

8
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of quantities known at the abort point and 6p and h, the true anomaly
increment and the angular momentum.

With 6, and h known, equations (1) and (2) determine the transfer
trajectory. Equation (3) expresses the total velocity required at the abort
point in terms of the results of equations (1) and (2) and the unit vectors
in the radial and new downrange directions. These unit vectors are:

Ur = Ro/Ry (6)

Up

li

+[(Ry X Ry )/|Ry X B |1 x Uy (7

The components of the first velocity increment to be added are simply
obtained by subtracting vectorially the initial velocity at the abort point
from the desired velocity at the abort point, v%re . Equations (4) and (5)
are needed to obtain the magnitude of the second velocity increment.

The incremental true anomaly, 6p, is available from the next equations:

RA
0 "~ L - cos(s) where s < 180° (8)
Rofy,
S _ _ _ _ +
ANG = if (RoXVy) + (Rp>Rp,) is (9)
213 -
6, = ANG - 6, - 6 (10)

A B C

The quantity ANG, which is the true anomaly downrange from the abort
point to the landing site, is two-valued in equation (9). This equation
determines whether ANG 1is more or less than 180° and the proper values in
equation (9) are selected before flight by computation of the vector product
along the nominal abort trajectory. This choice is included in the data table
since only a most extreme trajectory deviation, such as a gross misfire on
injection, could affect this choice. In such an extreme circumstance the crew
would probably use a minimum time abort to any safe entry and not attempt to
obtain a desirable landing site.

Now it only remains to find the value of angular momentum, h, that cor-
relates with the known time increment which is the difference between the
time of rendezvous with the fictitious vehicle and the estimated time of
arrival at the way station. The following transcendental equation (ref. 9)
gives the transfer time

3 ) .
T, = %T [EB - Epeq - e(sin Eg - sin Ereq)} (11)



where E, o is the eccentric anomaly immediately after the first velocity
increment and Eg is the eccentric anomaly just before the second velocity
increment. The parameters a, Ereq, Eg are determinable in terms of quanti-
ties known at the abort point and 6p and h. (See appendix A.) Thus given

6p and h equation (11) will yield the transfer time. This time equation must
be solved simultaneously with equations (1) and (2) which determine the veloc-
ity ingrement components VRreq’ VDreq and the pertinent equations of
appendix A.

The solution of these equations is not straightforward and a numerical
solution would require a tedious iterative procedure. The astronaut cannot
find the solution to these equations with a practical amount of hand calcula-
tion and it would be objectionable to burden the main on-board computer with
this task since appreciable additional computer storage and time would be
required. This impasse may be avoided by more preflight analysis; these
equations are solved for all values of angular momentum, h, and incremental
true anomaly, 6p, which are of interest for a particular way station and a
particular terminal range and the solutions are displayed graphically.

An example of such a graph is shown in figure 2(a) which is an overall

view of the relationship between the angular momentum, h, the true anomaly
increment, 6p, and the time increment, Tp. The value of h cannot be

30 -
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1.0 | | | 1" | | |
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Transfer trajectory flight time, hr

(a) General view.

Figure 2.- Conic data for a range of 150,000 km at abort and a range of 20,000 km at the time of
the second velocity correction.
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determined with sufficient accuracy from this graph but a section of the
figure can be enlarged, as in figure 2(b), so that h can be interpolated to
four significant figures.

8, rad

! J i
L t
"sg%ao 37.20 3760 38.00 38.40 38.80 39.20 39.60 40.00

TA,hr
(b) Detailed view.

Figure 2.- Concluded.

METHOD OF COMPUTATION

With this overview of the relevant equations in mind it is proposed that
the on-board computer solve equations (6), (7), and (8) and give the results
UR, Up, and ANG along with the routine projections of Rgs Yo, Tg to the
way station. This will consume computer time and space but equations (6),
(7), and (8) are straightforward so that the additional on-board computer
requirement is small. The solution of equation (7) does require that knowl-
edge of the landing site coordinates appropriate to a given way station be
available to the on-board computer. The on-board computer subroutine might
be manually initiated by the astronaut inserting into the computer the land-
ing site coordinates and the way station range. The quantities Rg, Vg, Tos
ANG, Ug, Up would then be computed and made available to the crew. This
information, together with preflight data, is all that is necessary for the
two-impulse calculation.

11



The block diagram presentation of figures 3(a) and 3(b) shows the order
in which the computations must proceed. In figure 3(a), the alternate solu-
tion for 6p is shaded since for all the data developed in this study
6pA + 6B + 6C was greater than 180°

To

3 and RFf =
Te
+
——» h
—» 06,
8a =
/s 2w -ANG- (8g+8¢) \\
/ \
6
ANG, 98. ec _—‘d &
39’ /OOOOQQOOOOQOQQ’2227
/ Not used for any
/ data in this report
Y ///
ANG, Tq — from on-board computer
98, ec, TF y Ro, RF - from data table
(a) First half.
- On-board
Datao table
computer
Ro. Rr, Try VRF. Vor, 68, Tp
bor Teo Rew X0 M 20Ty Ur Up Vo

Total
sl e
required
A
h —p Equations VRreq: Voreq
8 (1), (2),4), AVga, AVpy
A (5)
v Avre |
Av, =, /AVE VS, - -
(b) Second half.
Figure 3.- Flow chart for computations.
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It should be pointed out that this computational scheme, with or without
a reference trajectory, offers a backup mode of operation for calculating mid-
course corrections for interplanetary missions when computer failure is more
likely because of extended flight time. The graphical solution approximates
the numerical integration capability of the main computer for this purpose.
If R, V, T can be estimated then Ug, Up, etc., can be computed on board
with little difficulty. It is, of course, also required that the inertial
position coordinates of the target point and a desired time to reach the
target point be known.

The on-board numerical procedure can be kept simple conceptually through
the use of a computing form which has on it all the numbers pertinent to the
solution for the reference abort from the particular way station. Then the
number resulting at any stage from the actual on-board computations is
entered directly below the corresponding reference trajectory number. This
will prevent gross errors since these numbers will normally be similar in
sign and magnitude. This is so because ordinarily the actual outbound tra-
jectory is a perturbation of the reference trajectory. The theory, however,
is not limited by a small perturbation requirement. A suggested organization
of the necessary computations is given in chart 1(a) which shows the form as
it appears before flight. The crosshatched areas indicate the places where
the data furnished by the on-board computer is entered.

The calculations can be performed in 15 minutes including the sine and
cosine lookup and the graphical interpolation. The materials required for
this calculation are: a pencil, the reference computation form, sine and
cosine tables, the family of graphs for the time constraint, and a small
multiplier of at least four digit accuracy. This calculation may be per-
formed after a decision to abort is made or it may be done periodically as a
desirable routine navigation procedure just as present day aerial navigators
periodically calculate the point of no return in order to expedite decision
making in the event of an abort.

Although it is expected that the actual trajectory will be near the ref-
erence trajectory this computation will be valid and the space vehicle will
land at the desired landing site even if the actual trajectory is very dif-
ferent from that intended. The computation uses Keplerian orbit theory and
is independent of the reference trajectory which is used only for determining,
in a complex preflight examination, the most desirable landing site for a
given abort range.

However, large deviations from the nominal may require additional
enlarged sections, similar to those in figure 2(a), to be available. Numer-
ical data on this point are presented later. A further limitation on large
trajectory deviations is that the fuel requirements generally increase.

When the calculations produce incremental velocity requirements, AV; and AV,,
that are not achievable because of fuel limitations then a return without
regard for a landing site may be accomplished. Alternatively, if time is
available, another two-impulse calculation may be performed with perhaps a
different abort range, a different landing site, or a different landing time.

13



NUMERICAL RESULTS

In order to demonstrate the flexibility available with two rocket firings,
the landing sites chosen for the numerical work were dispersed in latitude
including one whose latitude (34° N) is appreciably greater than the inclina-
tion of the reference trajectory (28.6°). The latitude of the landing site
of an in-plane return cannot exceed the inclination of the actual trajectory
plane. Consequently, a return to the 34° latitude landing site will require
a plane change if the inclination of the outgoing trajectory plane is less
than 34°. The three landing sites are:

Louisiana 94° West, 34° North
Hawaii 158° West, 24° North
Australia 150° East, 15° South

In the future, water landings may not be required and a landing site
within the continental United States would reduce the expensive deployment of
men and machines currently necessary. The Louisiana site was selected for
these reasons. The other two sites were selected because they are secure

water areas easily patrolled.

The reference trajectory used in obtaining the data is a typical lunar
free return trajectory having a 100 nautical mile perilune and a transit time
of 70 hours from injection to perilune. This trajectory, which was also used
in obtaining the data of reference 6, is defined further in that report.

Since the objective of this study is only to show the feasibility and
the flexibility of on-board manual abort calculations, a detailed optimiza-
tion of the possible abort trajectories from each of many way stations was
not attempted. The last two abort trajectory sections are the same throughout
this report. The approach trajectory has an eccentricity of 0.94 with
R = 20,000 km; VRr = -4.869 km/sec; Vpg = +3.526 km/sec; 6p = 113.6°;
Ty 0.8315 hr. The atmospheric portion of the trajectory, which includes
all the landing trajectory and part of the approach trajectory, has an entry
range of 2,000 nautical miles from 400,000 ft to landing. Using an approxi-
mate linear relation given by Cicolani (ref. 10), between entry time and entry
range, the following is readily established:

Range, entry Time, entry Time, perigee 6c, perigee

to landing, to landing, to landing, to landing,
nautical miles hr hr - radians
2000 0.1910 0.1571 0.3713

This is part of the information available to the crew from preflight analysis.
Data were obtained for only three way stations at distances from the
earth of 100, 150, and 200 thousand km. Even without any freedom in selection

of the last two trajectory sections, solutions within the capability of the

14
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Apollo vehicle were obtained at each way station for more than one landing
site. This is shown in table I which points up the flexibility inherent in
a two-impulse return. Successful returns can be made to all three landing
sites from all three way stations, but at the 100,000 km station, both the
Australia and Louisiana landing sites, require near capacity amounts of fuel
for the landing times tabulated. Returns which land 24 hours later require
much less fuel.

It might seem at first that the Australian returns would be more effi-
cient if the plane change angle (AOP) were reduced, but this is not true in
this particular case. For example, a return to Australia from the 100,000 km
way station, with a landing time later than the tabulated case, has the
following characteristics:

AOP = L4 .4° T, = 32.66 hr

304.6°

1}
1l

AVy = 1.719 km/sec ]

L .2k0 km/sec

AV

This return trajectory has a smaller plane change angle, but requires
considerably more fuel.

No consideration has been given in table I to the lighting conditions at
landing since normally one of the dispersed sites available from a given way
station will be in daylight. Moreover, a daylight landing may not be
required. For Apollo, it is planned that the early trips will be made when
the earth side of the moon is in the sun. Then the perigee location for
single-impulse midcourse aborts will always be in daylight and, when entry
range is limited to 2000 nautical miles, all the attainable landing sites
will be in daylight. Under the same entry range restriction two-impulse
aborts will not necessarily result in daylight landings since the possible
landing areas are greatly increased.

A complete computation for an abort to Hawaii is given in chart 1(b) for
the following illustrative situation: the space vehicle is assumed to have
arrived at the 200,000 km way station a full hour late but with exactly the
R, V of the reference trajectory. This approximates the situation which
results from a 1 hour launch delay. It is seen that a satisfactory abort can
be accomplished with negligible fuel penalty despite this delay. The nominal
velocity increments are AV; = 2.157 km/sec and AV, = 0.092 km/sec. With the
delay, the velocity increments are AV; = 2.219 km/sec and AV, = 0.062 km/sec.

The data pertaining to the reference abort trajectory appear in the top
of each compartment in chart 1(b). In the bottom of each compartment are the
data from the on-board computation where the quantities estimated by the
on-board computer are in crosshatched areas.

The major result of this computation is the velocity vector required at
the abort point in order to accomplish the desired landing. It is only neces-
ary to compute the components of this velocity vector to an accuracy of
1 m/sec for the following reasons:
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1. The effects of the sun and moon are neglected in these two-body
computations.

2. When the rockets are fired the actual velocity components will differ
from those intended.

3. The quantities (R, V, T) furnished by the main on-board computer are
estimates.

4. The computations assume an impulsive velocity increment but the
rockets will fire for many seconds.

Approximations 1 and 2 above are both capable of producing errors greater
than 1 m/sec and approximations 3 and 4 produce further contributions. Con-
sequently, the number of significant figures carried in the computation should
only be enough to obtain accuracies approximating 1 m/sec. 1In chart 2 the
reference abort trajectory, displayed in the top of each compartment, was cal-
culated with at least five significant figures at every step, including the
graphical lookup. The abort trajectory, displayed in the bottom of each com-
partment, was calculated with no more than four significant figures. In this
case, the less accurate computation was sufficient to obtain all components
of the velocity vector accurate to better than 1 m/sec. A 20-inch slide rule,
giving about four significant figures, is probably adequate for the computa-
tions but a small mechanical multiplier of five digit accuracy is preferable.

When a spacecraft arrives at a way station, it will have position and
velocity deviations from the reference trajectory. The analysis of the veloc-
ity increment penalty due to velocity deviations alone is simple since, con-
ceptually, one can fire a rocket whose velocity increment exactly nulls the
velocity deviation and thus returns the spacecraft precisely to the refer-
ence trajectory. Consequently, this velocity increment penalty can be no
more than the nulling velocity increment. However, the magnitude of the
nulling velocity increment is small, compared to the more than 1.0 km/sec
used in the first velocity impulse of the abort maneuver, since a velocity
deviation of 50 m/sec is considered to be a large deviation. Therefore, it is
not necessary to present detailed numerical data concerning the velocity
increment penalty due to velocity deviations.

However, the position deviation may be substantial although its radial
component at the way station is zero, by definition. The computation given in
chart 3 compares a reference abort at the 150,000 km way station with an
abort from a trajectory which deviated 5,000 km out of the intended orbital
plane at the time of arrival at the way station. It is assumed that the
spacecraft traveling the deviated trajectory arrived at the way station on the
time schedule of the reference trajectory and with the same velocity vector.
This comparison demonstrates that this type of error does not necessitate a
substantial increase in velocity increment. In this example, figure 2(b) was
used to determine the angular momentum demonstrating that the scales chosen
for figure 2(b) cover a sufficient range for reasonable errors. The 05 and
Tp of the lower point marked on figure 2(b) were obtained in the preflight
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calculation of chart 3. The 6p and Tp of the upper point marked in fig-
ure 2(b) were obtained through the calculation related to the deviation
trajectory of chart 3.

The family of curves presented in figure 2(b) are very nearly straight
lines, suggesting possible future work in determining h from 6p, Tp. The
result would be to replace the graphs of general conic characteristics with a
table based on a linear representation of h. That is h = K;Tp + K, where
Ky, K, are tabulated functions of 6p. Such a table might cover a wide
range of deviations simply.

CONCLUSIONS

The purpose of this study has been to increase the astronaut's capability
of determining the two-impulse abort maneuver that will return him to a favor-
able landing site. A computation procedure has been developed which obtains
three orthogonal components of the velocity to be added for the first impul-
sive rocket firing and the magnitude of the second velocity increment. The
on-board computations have been organized into a computing form of reasonable
simplicity. The three orthogonal components of the first velocity increment
can be determined manually to sufficient accuracy in 15 minutes.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035
125-17-05-01-00-21
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APPENDIX A
PROCEDURE FOR DETERMINING THE TRANSFER TIME

The purpose of this appendix is to show how the time increment required
for the transfer trajectory may be determined when the true anomaly increment,
6A, and the angular momentum, h, are given along with the initial and terminal
radii and radial velocities of the transfer trajectory. This time increment
is:

3
T, = /%I [Eg - Epeq - e(sin Bg - sin Epeq)] (A1)

The following two equations are standard conic relations:

e cos Qreq = ;ﬁa -1 (A2)
n2

e cos(Greq +8,) = ;ﬁ; -1 (A3)

The eccentricity, e, may be found by expanding cos(breq * 6a) and using

equation (A2) in equation (A3). This yields:
: h2 /2 1

9 = - 0s 9 - - l A4
© i Preq [ > c A KPRF :ﬂ sin QA (A4)

Now if equations (A2) and (A4) are squared and added, the eccentricity
is determinable as:

[62/(uRg) - 117
e? = (-2 cos GA[hz/(uRo) - 1][n3/(uRp) - 1]) (1/sin QA)2 (AS5)
+[02/ (uRy) - 117

The radius of perigee, Rp, and the semimajor axis, a, are found from:

2
Rp O
p(l + e)
o = B _
1l1-e
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The initial eccentric anomaly of the transfer orbit, Ereq’ is given by:

1l

cos Epreq

=
]

req

Ereq =

The terminal eccentric anomaly of the transfer orbit, Eg, is given by:

cos EB

Eg

Eg

In this report VRB

Rp - Ro(1l - e)

RPe
arccos(cos Ereq)

21 - Ereq if

Ereq if

B Rp —RF(l - e)

RPe

arccos(cos Eg)

21 - EB if

EB if

was always less than zero.
may now be determined from equation (Al).

for

VR

VRI‘ eq

o< Ereq < x

<0

Treq

for

VR

VR

B
B

<0

>0

>0

O<EB<TE

The time increment, Ty,
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TABLE I.- RESULTS OF ABORT COMPUTATIONS FOR THREE WAY STATIONS AND THREE

LANDING SITES WITH A 2000 NAUTICAL MILE ENTRY RANGE

Way station
at 100,000 km
g | AOP = 23.4°
g |avy, = 2.183
@ | AV, = 1.04k4
3 | Ty = 19.84
% 3 26 = 218.3°
w
0 ., |aop = o.0
5 a3 lavy = 0.971
g 8 {avs = 0.h72
3 3 Ty = U6.81
v6 = 204,00
9 AOP = Tk ho
— AV]_ = 2.005
& |ave = 1.025
s Tp = 25.16
2 6 = 22k 30

6.% hours

Time between way stations

Way station

| at 150,000 km

AOP = 28.3°
AV]_ = 1.606
AVZ = l.:l.l6
Tp = 38.39
g = 225,20
AOP = 0.0
AVl = 2.46)4-
Ny = 0,463
Ta = L40.43
e = 197.20
AOP = 70.3°
AVy = 1.530
AVE = 0.918
Ty = 43.21
e = 223.8°

T.9 hours

Time between way stations

Way station
at 200,000 km

AOP = 30.2°
AV; = 1.382
MNVs = 0,306
Ta = 53.39
¥6 = 209,40
AOP = 0.0
AV, = 2.157
AVZ = 0.092
Tp = 32.49
6 = 193.9°
AOP = 74,20
ANV, = 1.335
AVZ = 0.900
Tp = 59.21
vO = 222,60

Velocities in km/sec. Time in hours.
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Abort from 200,000 km to Hawaii

10 11 12

1.0

9,0 610 g 2] T h cos 8 sin 8
NG A193 B A A A A /b ~cos 8y

F &

1.0
NS 02 e | I W®© B | @
1.0312

3.0138 //’ ‘\\ 1.9826 .03 32.490 69,200 0.5140 0.8578 10.0 5.760 0.4860 2.799
1.9826 10.0
13 1k 15 16 17 18 19 20 21 22 23 24
Ro/Ry h p(l-cos) v v 1.0 VRF A R A
-cos 8 Ry sin 04 | b sin 64 Rreq Preq | -Ro cos/RF | +(19 Vr2 Vo2 Vo

413__€!9 1.0 o _ Vpr 2
010 @O @0 YO o | oo O® &0 .., | [

9.486 0.4034 3.263 -0.5637 0.3460 ~h.1ko -1.606 -1.670 0.064 0.066 0.092
Yrap | Upown (VRreq) ﬁRAD*’("Dreq)I_JDOWN = VIpeq Yo | VrpeqVo (VT—VO)Z o | o | R Ry
Xcomp | -0.1994 | 0.9ke2 (0.1124) + (0.3260) = 0.438L +0.021k4 | +0.4170 0.1739 -211| -39,887
Yeomp | -0.8656 | -0.3030 (0.4879) + (-0.1048) = 0.3831 -1.4828| +1.8659 3.4816 | 4.6511| 2.157| 5823 | -173,130
Zeomp | -0.4592 | 0.1618 (0.2589) + (0.0560) = 0.31k9 -0.6829| +0.9978 0.9956 2594 | -91,849
6378 200,000
T7777770 /777777 777777, v IIIIIII/
Yoomp U D oVt - - - G g : st
P7777777V 7777777, 77777 V277777
R RSSO P9/ M LR B S e S/ : ' : .
Zcomp é/z 2z 2 11.1411/ ( ° ) * ( : ) = N 4/ '11// : . IV,
ANG = 2.898L | To = 33.601| Tp = 66.09L | Ty, = 67.080 | T¢ = 0.157

TIII777777777 7777777777

et rsscicecdALD L, e

¥4

= 398,600 km®/sec® VRF

-4.869k xm/sec Tgp = 0.832 hr

li

S
1

3.5258 km/sec ece = 0.9400

20,000 km VpF

I

(a) As it appears before flight.

Chart 1.- The computing form used for an abort from 200,000 km to Hawaii.
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Abort from 200,000 km to Hawaii

1 2 3 Iy 5 6 7 8 9 10 11 12
9,49 0,48 ) 6 T n cos 6 sin 6 Ro /n 1.0
AtEB A19B B A A A A TF b -cos 64
5.9119 ANG @—@ from 1.0
~ANG . 3743 @f@ TrTo graph w/(®) - <@
3.0138 /// \\\ 1.9826 1.0312 32.490 69,200 0.5140 0.8578 10.0 5.760 0.4860 2.799
3.0138 1.9826 1.0312 31,490 69,820 0.5140 0.8578 10.0 5.709 0.4860 2.775
13 1 15 16 17 18 19 20 21 22 23 2h
Ro/Rp h u(l-cos) 1.0 VREF
-cos 6y RO sin OA | b sin 64 VRreq VDreq | -Ry cos/Rp + (9 Vg e A2
-0 w | [
®® @0 | @0 | VY| o~ | ge O® | O@ | wn || B
9.486 0.403h4 3.263 -0.5637 0.3460 ~k.1k0 -1.606 ~-1.670 0.06k4 0.066 0.092
9.486 0.4070 3.235 -0.6258 0.3491 -4.140 -1.634 -1.685 0.051 0.035 0.062
—_ — . — — _ — — — _\2 _ —
Urap | Upown (%Rreq)URAD+<%Dre;>UDOWN = VTpgq Vo | VrpeqVo (ﬁT—vé> a2 | vy | Ry Rg
Xeomp | -0.1994 [ 0.9k22 (0.1124) + (0.3260) = 0.4384 0.021% | +0.4%170 0.1739 -211 | -39,887
Yoomp | -0.8656 | -0.3030 (0.4879) + (-0.1048) = 0.3831 |-1.4828 | +1.8659 3.4816 | 4.6511 | 2.157| 9823 | -173,130
Zoomp | -0.4592 | 0.1618 (0.2589) + (0.0560) = 0.3149 |-0.6829 | +0.9978 0.9956 2594 | -91,849
6378 200,000
Xeomp 20,1994}, 0.94287) (0.1248) + (0.3289) = 0.4537 | 0.0214)+0.4325 0.1869 254,457
Yeomp [//-0.86564,-0.30307) (0.5417) + (-0.1058) = 0.4359 [ -1.48287+1.9187 | 3.6814] 4.9226 | 2.219 1173, 130
Zeomp [//-0.4592% 0.1618,) (0.2874) + (0.0565) = 0.3439 |0 6829+1.0268 | 1.0543 L7257, 649
ANG = 2.8981 | To = 33.60L | Tp = 66.001 | T, = 67.080 [ 16 = 0.157
G, < 2.898100 % = 34,601/
i o= 398,600 km3/sec? Vrr = -14.869h km/sec Ty = 0.832 hr
Rp = 20,000 km VpF = 3.5258 km/sec ecc = 0.9400

(b) The computing form as it appears after on-board entries are made (launch delay example).

Chart 1.- Concluded.
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Avort from 200,000 km to Australia

n

Ry

20,000 km

398,600 ku®/sec?

VRF =

Vor

-k 8694 xm/sec

3.5258 km/sec

T

ecc

It

0.9400

0.832 hr

1 2 3 L 5 6 7 8 9 10 11 12
. R 1.0
6,403 0,49 op N s h cos 6, sin 0 e u/h —con 8,
_ 1.0
5.9119 ANG <:2r<:> _ from
G N33 ®-6G) r o graph w/(@© @ (OREY
3.5139 /" \\ 1.9826 1.5313 59.209 8logo 0.03949 0.99922 10.0 I 7289 0.96051 | h.5h22
3.514 1.983 1.531 59.21 84280 0.0398 0.9992 10.0 4,789 0.9602 4.541
13 1h 15 16 17 18 19 20 21 22 23 2k
Ro/RF h p(l-cos) v v 1.0 VRF A A
-cos 8p Ro sin 65 | h sin 64 Rreq Dreg -Rg cos/Rp " @5) P AV Vo
©- ) 10 VoF -
— X X
@@ / @/ X@ @/Ro @x@ @ @ -n/Bp /+§z
9.9605 0.42178 L 5457 0.34456 0.42145 0.60510 -0.32370 0.25522 | -0.57892 -0.68870 0.900
9.960 0.4217 4.545 0.3449 0.4214 0.6020 -0.3240 0.2539 -0.5779 -0.6880 0.898
Upap | Upowm (VRreq)ﬁRAD+(VDreq)ﬁDowm = VIyeq Vo |trea 0| ()2 | | oy | R Ro
Xeomp | -0.19944 | 0.01685 | (-0.06872) + (0.00710) = -0.0616 |+0.021% | -0.0830 0.007 86k | -39,887
Yoomp | -0.86563 | -0.47162 | (-0.29826) + (-0.19876) = -0.4970 | -1.4828 | +0.9858 0.972 |1.782(1.335| 6100 |-173,130
Zoomp -0.4590h | 0.88164 | (-0.1582k) + (0.37157) = 0.2133 [-0.6829 | +0.89%62 0.803 -1651 | -91,849
6378 200,000
N AN - V0. 0214 -0. . L -
Xeomp ;?‘9 3924/—/’€’d£’€é: (-0.0688) + (0.0071) 0.0617 4220225g 0.0831] 0.007 ;44§9,529;/
Ycomp ,/;gygéég:jcagégzggé; (-0.2985) + (-0.1987) = -=0.4972 22%;4€€€/ +0.9856 0.971 | 1.781] 1.335 ;;555522945
Zoomp /-0.45927% 0.88167) (-0.1584) + (0.3715) = 0.2131 -o.ésgg) +0.8960 0.803 V91,8507
ANG = 2.3980 | To = 33.60L| Tp = 92.810 | T = 93.799 | ¢ = 0.157
A5, = 2. 58870 = 35807

The first calculation used at least five significant
figures at every step.
The second calculation used no more than four significant

figures.

Chart 2.- Illustrating the effects of computational precision.
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Avort from 150,000 km to Louisiana

1 2 3 Iy 5 6 7 8 9 10 11 12
R 1.0
85405 040y 6y 8, TA h cos 8y sin 64 R—g u/h —cos 8a
5.9119 ANG @‘@ from 1.0
:ANG 3743 @?@ Tr-To graph u/@ —@ x@
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Chart 3.- Illustrating the effect of a 5,000 km out-of-plane error at the 150,000 km way station.
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